Archive for January, 2011


Intense, arcade-style tower defense for Android

The Story

HexDefense started as a class project for a mobile prototyping lab I took while at Carnegie Mellon. The lab required that apps be written in Java on the Android platform, and I figured it’d be a good opportunity to try writing a game. I’m a big fan of the tower defense genre and I’ve been heavily influenced by games on the iPhone like Field Runners and GeoDefense Swarm. From the outset, I wanted the game to have arcade style graphics reminiscent of Geometry Wars. That way, I figured, I wouldn’t have to find an artist to create the sprites, and I could focus on explosive OpenGL particle effects and blend-based bloom.

During the fall semester, I collaborated with Paul Caravelli and Tony Zhang on the first iteration of the game. I had the strongest graphics and animation background, so I focused on the gameplay and wrote all of the OpenGL code behind the game. I also created most of the game model, implementing the towers and creeps and creating actions with game logic for tower targeting, attacks, projectile motion, explosions, implosions and other effects. Paul contributed path finding code for the creeps based on breadth-first-search and created interfaces for implementing in-game actions based on the command pattern. He also contributed the original implementation of the grid model and worked on abstract base classes in the game model. Tony created the app’s settings screen and linked together activities for the different screens of the application.

At the end of the fall semester, the game was functional but unrefined. There were no sounds, no levels, and I’d only created one type of enemy. After the class ended, I talked with Paul and decided to finish it over my Christmas break. Paul was too busy to continue working on the app, so I continued development independently. I worked full-time for four weeks to deliver the level of polish I was accustomed to on the iPhone. I refined the graphics, tested the app across a variety of phones and added fifteen levels. I also added 3D directional sound, boss creeps and wrapped everything in a completely new look and feel. People say that the last 10% is the 90% of the work, and I think that’s particularly true on Android – there are minor differences across devices that make writing a solid game a lot more work than I expected.

The game was released at the end of January and has been well received so far. I created a lot of promotional art and setup a website with gameplay footage and press resources, and the game has garnered quite a bit of attention. It’s been featured on the front page of the Android marketplace and has a 4 1/2 stars. It’s rising in the “Paid Apps” rankings and is currently the #16th most popular game on the Android platform!

Lessons Learned:

I’ve learned a lot about the Android platform developing HexDefense. A couple of tips and takeaways:

  1. Let the OpenGL view run in CONTINUOUS mode. Nothing else (timers, threads that trigger redraws) will give performance close to this.
  2. Write all of the game logic so that it can advance the model by an arbitrary number of milliseconds. Because multitasking can cause hiccups in the game framerate, this is _really_ important for a smooth game.
  3. OpenGL textures are not numbered sequentially on all devices. The original DROID will choose random integer values each time you call glGenTexture.
  4. There are numerous drawbacks to using the Java OpenGL API. If your game needs to modify vertex or texcoord buffers every frame, you’ll have to accept a performance hit. The deformation of the grid in HexDefense is achieved by modifying the texcoords on a sub-segmented plane, and passing the data through a ByteBuffer to OpenGL is not cool.
  5. The iPhone’s OpenGL implementation is at least 2.5x faster, even on devices with half the processor speed. An iOS port of HexDefense is in progress, and the game runs twice as fast on an original iPod Touch as it does on a Nexus One. There are a lot of reasons for this, but it seems that drawing large textured quads has greater speed implications on Android devices.

Drill Down WebView Navigation

The next version of NetSketch will include a community browser, allowing you to view uploaded drawings, watch replays, and leave comments without leaving the app. When I started working on the community interface, I looked to other apps for inspiration. Almost every app I’ve used on the iPhone use a sliding navigation scheme, giving you the feeling that you’re drilling down into content as you use the application. This interface is intuitive in a lot of contexts, and dates back to the original iPod. The Facebook app allows you to browse other people’s facebook pages and uses a drill down navigation bar. This works well for the social-network space because you can drill down to look at information and then return to the first page quickly.

I decided to use a UINavigationBar and implement a similar drill-down interface for NetSketch. However, I didn’t want to create custom controllers for each page in the community. I wanted to be able to improve the community without updating the app, and didn’t want to write a communication layer to download and parse images and custom XML from the server.

Using a UIWebView seemed like the obvious choice. It could make retrieving content more efficient, and pages could be changed on the fly. With WebKit’s support for custom CSS, I could make the interface look realistic and comprable to a pile of custom-written views.

I quickly realized that it wasn’t all that easy to implement “drill down” behavior with a UIWebView. Early on, I ruled out the possibility of creating a mock navigation bar in HTML. Since Safari on the iPhone doesn’t support “position:static” or “position:fixed” CSS tags, there was no good way to make the bar sit at the top of the screen. I decided that a native UINavigationBar would be more practical and provide a better user experience. However, UINavigationController was built to use separate controllers for each layer, and doesn’t worry about freeing up memory when the stack of controllers gets big. I thought it was important that a maximum of eight UIWebViews were in memory at once, since Mobile Safari obeys that limitation and because pages could potentially be very large.

I tried several solutions, and finally created a custom DrillDownWebController class with a manually managed UINavigationBar to handle the interface. The class maintains a “stack” of DrillDownPages, with each page representing a single layer in the drill-down hierarchy. It can be a root level controller, or it can be loaded into an existing UINavigationController. When it appears, it silently swaps its parent’s navigation bar with it’s own.

The DrillDownPage is a wrapper for a UIWebView that acts as its delegate and provides higher-level access to important properties of the page, such as it’s title. When the user clicks a link in a web view, a new DrillDownPage object is created and it begins loading the requested page in an invisible UIWebView. The controller displays an activity indicator in the top right corner of the navigation bar, and slides in the new page when it finishes loading. All the other pages in the page “stack” are notified that their position in the stack has changed.

The notification step is important, because it allows the Page objects to